59 research outputs found

    Forward estimation of movement state in posterior parietal cortex

    Get PDF
    During goal-directed movements, primates are able to rapidly and accurately control an online trajectory despite substantial delay times incurred in the sensorimotor control loop. To address the problem of large delays, it has been proposed that the brain uses an internal forward model of the arm to estimate current and upcoming states of a movement, which are more useful for rapid online control. To study online control mechanisms in the posterior parietal cortex (PPC), we recorded from single neurons while monkeys performed a joystick task. Neurons encoded the static target direction and the dynamic movement angle of the cursor. The dynamic encoding properties of many movement angle neurons reflected a forward estimate of the state of the cursor that is neither directly available from passive sensory feedback nor compatible with outgoing motor commands and is consistent with PPC serving as a forward model for online sensorimotor control. In addition, we found that the space–time tuning functions of these neurons were largely separable in the angle–time plane, suggesting that they mostly encode straight and approximately instantaneous trajectories

    Bifurcation study of a neural field competition model with an application to perceptual switching in motion integration.

    Get PDF
    Perceptual multistability is a phenomenon in which alternate interpretations of a fixed stimulus are perceived intermittently. Although correlates between activity in specific cortical areas and perception have been found, the complex patterns of activity and the underlying mechanisms that gate multistable perception are little understood. Here, we present a neural field competition model in which competing states are represented in a continuous feature space. Bifurcation analysis is used to describe the different types of complex spatio-temporal dynamics produced by the model in terms of several parameters and for different inputs. The dynamics of the model was then compared to human perception investigated psychophysically during long presentations of an ambiguous, multistable motion pattern known as the barberpole illusion. In order to do this, the model is operated in a parameter range where known physiological response properties are reproduced whilst also working close to bifurcation. The model accounts for characteristic behaviour from the psychophysical experiments in terms of the type of switching observed and changes in the rate of switching with respect to contrast. In this way, the modelling study sheds light on the underlying mechanisms that drive perceptual switching in different contrast regimes. The general approach presented is applicable to a broad range of perceptual competition problems in which spatial interactions play a role

    Optic Flow Stimuli in and Near the Visual Field Centre: A Group fMRI Study of Motion Sensitive Regions

    Get PDF
    Motion stimuli in one visual hemifield activate human primary visual areas of the contralateral side, but suppress activity of the corresponding ipsilateral regions. While hemifield motion is rare in everyday life, motion in both hemifields occurs regularly whenever we move. Consequently, during motion primary visual regions should simultaneously receive excitatory and inhibitory inputs. A comparison of primary and higher visual cortex activations induced by bilateral and unilateral motion stimuli is missing up to now. Many motion studies focused on the MT+ complex in the parieto-occipito-temporal cortex. In single human subjects MT+ has been subdivided in area MT, which was activated by motion stimuli in the contralateral visual field, and area MST, which responded to motion in both the contra- and ipsilateral field. In this study we investigated the cortical activation when excitatory and inhibitory inputs interfere with each other in primary visual regions and we present for the first time group results of the MT+ subregions, allowing for comparisons with the group results of other motion processing studies. Using functional magnetic resonance imaging (fMRI), we investigated whole brain activations in a large group of healthy humans by applying optic flow stimuli in and near the visual field centre and performed a second level analysis. Primary visual areas were activated exclusively by motion in the contralateral field but to our surprise not by central flow fields. Inhibitory inputs to primary visual regions appear to cancel simultaneously occurring excitatory inputs during central flow field stimulation. Within MT+ we identified two subregions. Putative area MST (pMST) was activated by ipsi- and contralateral stimulation and located in the anterior part of MT+. The second subregion was located in the more posterior part of MT+ (putative area MT, pMT)

    Stronger Neural Modulation by Visual Motion Intensity in Autism Spectrum Disorders

    Get PDF
    Theories of autism spectrum disorders (ASD) have focused on altered perceptual integration of sensory features as a possible core deficit. Yet, there is little understanding of the neuronal processing of elementary sensory features in ASD. For typically developed individuals, we previously established a direct link between frequency-specific neural activity and the intensity of a specific sensory feature: Gamma-band activity in the visual cortex increased approximately linearly with the strength of visual motion. Using magnetoencephalography (MEG), we investigated whether in individuals with ASD neural activity reflect the coherence, and thus intensity, of visual motion in a similar fashion. Thirteen adult participants with ASD and 14 control participants performed a motion direction discrimination task with increasing levels of motion coherence. A polynomial regression analysis revealed that gamma-band power increased significantly stronger with motion coherence in ASD compared to controls, suggesting excessive visual activation with increasing stimulus intensity originating from motion-responsive visual areas V3, V6 and hMT/V5. Enhanced neural responses with increasing stimulus intensity suggest an enhanced response gain in ASD. Response gain is controlled by excitatory-inhibitory interactions, which also drive high-frequency oscillations in the gamma-band. Thus, our data suggest that a disturbed excitatoryinhibitory balance underlies enhanced neural responses to coherent motion in ASD

    Perceptual Learning in the Absence of Task or Stimulus Specificity

    Get PDF
    Performance on most sensory tasks improves with practice. When making particularly challenging sensory judgments, perceptual improvements in performance are tightly coupled to the trained task and stimulus configuration. The form of this specificity is believed to provide a strong indication of which neurons are solving the task or encoding the learned stimulus. Here we systematically decouple task- and stimulus-mediated components of trained improvements in perceptual performance and show that neither provides an adequate description of the learning process. Twenty-four human subjects trained on a unique combination of task (three-element alignment or bisection) and stimulus configuration (vertical or horizontal orientation). Before and after training, we measured subjects' performance on all four task-configuration combinations. What we demonstrate for the first time is that learning does actually transfer across both task and configuration provided there is a common spatial axis to the judgment. The critical factor underlying the transfer of learning effects is not the task or stimulus arrangements themselves, but rather the recruitment of commons sets of neurons most informative for making each perceptual judgment

    Spatial distribution of the antagonistic surround of MT/V5 neurons

    No full text
    The majority (217/325, 66%) of the neurons in the middle temporal (MT) area/V5 show strong antagonistic surrounds, defined here by a decrease of at least 50% in the summation curve. We mapped the antagonistic surround in 145 such cells, using eight circularly distributed surround stimulus patches (Surround Asymmetry Test, SAT) and also mapped the surround in 51 of these 145 cells using a grid consisting of 25 square patches (Surround Mapping Test, SMT). Both tests showed that the angular surround distribution was non-uniform in the majority of these neurons. In half the neurons, the antagonistic surround was asymmetric, and arose from a single region on one side of the excitatory receptive field (ERF). In another quarter of the sample the surround was bilaterally symmetric, and arose from a pair of regions on opposite sides of the ERF. Only the remaining 20% showed a circularly symmetric surround distribution. These three groups differed in their laminar distribution. The SMT showed that, radially, the surround antagonism reached a maximum, on average, at 1.5 times the ERF radius, Detailed comparisons of the spatial relationships of excitatory and inhibitory regions of the RF components shows that non-homogeneity of the surround influence appears to be an intrinsic property of the surround. Such a property may underly the extraction of the surface orientation and curvature from speed patterns

    Speed and direction selectivity of macaque middle temporal neurons

    No full text

    Processing of kinetically defined boundaries in areas V1 and V2 of the macaque monkey

    No full text
    We recorded responses in 107 cells in the primary visual area V1 and 113 cells in the extrastriate visual area V2 while presenting a kinetically defined edge or a luminance contrast edge. Cells meeting statistical criteria for responsiveness and orientation selectivity were classified as selective for the orientation of the kinetic edge if the preferred orientation for a kinetic boundary stimulus remained essentially the same even when the directions of the two motion components defining that boundary were changed by 90 degrees. In area V2, 13 of the 113 cells met all three requirements, whereas in V1, only 4 cells met the criteria of 107 that were tested, and even these demonstrated relatively weak selectivity. Correlation analysis showed that V1 and V2 populations differed greatly (P &lt; 1.0 x 10(-6), Student's t-test) in their selectively for specific orientations of kinetic edge stimuli. Neurons in V2 that were selective for the orientation of a kinetic boundary were further distinguished from their counterparts in V1 in displaying a strong, sharply tuned response to a luminance edge of the same orientation. We concluded that selectivity for the orientation of kinetically defined boundaries first emerges in area V2 rather than in primary visual cortex. An analysis of response onset latencies in V2 revealed that cells selective for the orientation of the motion-defined boundary responded about 40 ms more slowly, on average, to the kinetic edge stimulus than to a luminance edge. In nonselective cells, that is, those presumably responding only to the local motion in the stimulus, this difference was only about 20 ms. Response latencies for the luminance edge were indistinguishable in KE-selective and -nonselective neurons. We infer that while responses to luminance edges or local motion are indigenous to V2, KE-selective responses may involve feedback entering the ventral stream at a point downstream with respect to V2.</p
    • …
    corecore